

19 CROSBY DRIVE BEDFORD, MASSACHUSELTS 01730 617-275-2970

C-583-7-0-159

July 23, 1990

Mr. Tom Moye Agency of Natural Resources Department of Environmental Conservation Hazardous Materials Management Division 103 South Main Street Waterbury, Vermont 05676

Subject: Final Screening Site Inspection

Vermont Tissue

Bennington, Vermont TDD No. F1-8903-17 Reference No. \$375VT58I\$ CERCLIS No. VTD059373316

Dear Mr. Moye:

Enclosed are three copies of the Final Screening Site Inspection package for the Vermont Tissue facility, located in Bennington, Vermont. This Final Screening Site Inspection package has been revised according to comments received. Unaddressed comments have been incorporated in the NUS/FIT project file.

If you have any questions, please do not hesitate to call.

Sincerely,

Paul Young^{*} Project Manager

PY:aa

Enclosure

cc: D. Smith/EPA-RPO (w/o enclosure)

J. Weiss (w/o enclosure)

19 CROSBY DRIVE BEOFORO, MASSACHUSETTS 01780 617-875-2970

> C-583-7-0-161 July 23, 1990

Final Screening Site Inspection Vermont Tissue Bennington, Vermont

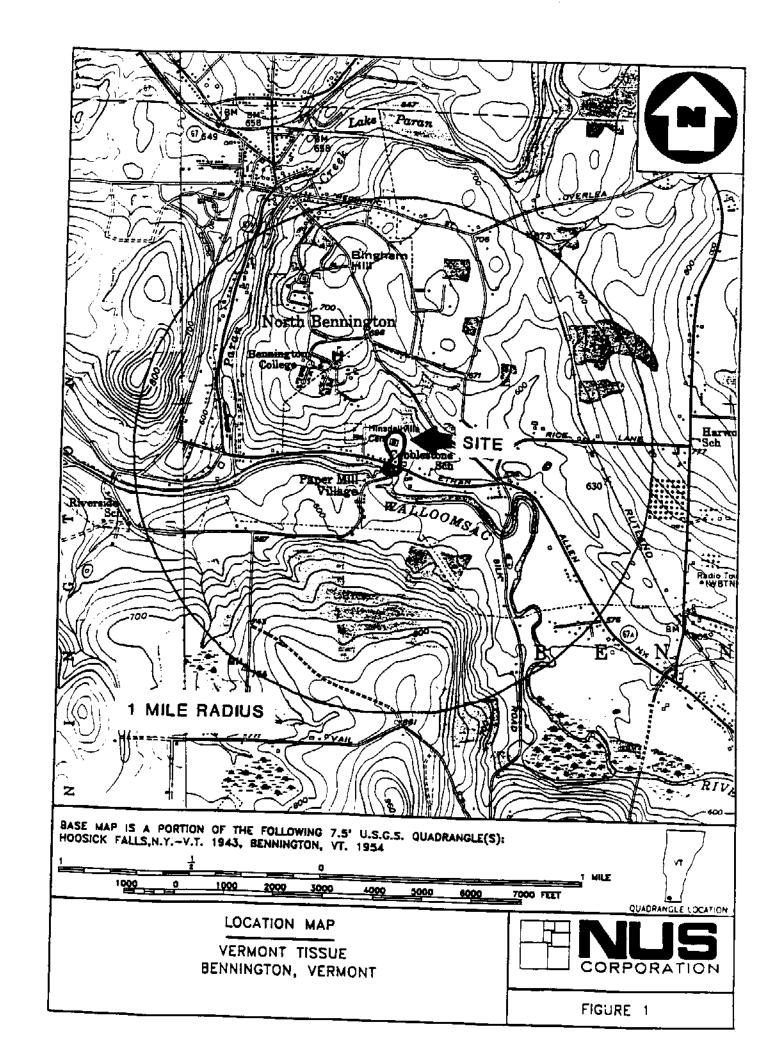
TDD No. F1-8903-17 Reference No. \$375VT58I\$ CERCLIS No. VTD059373316

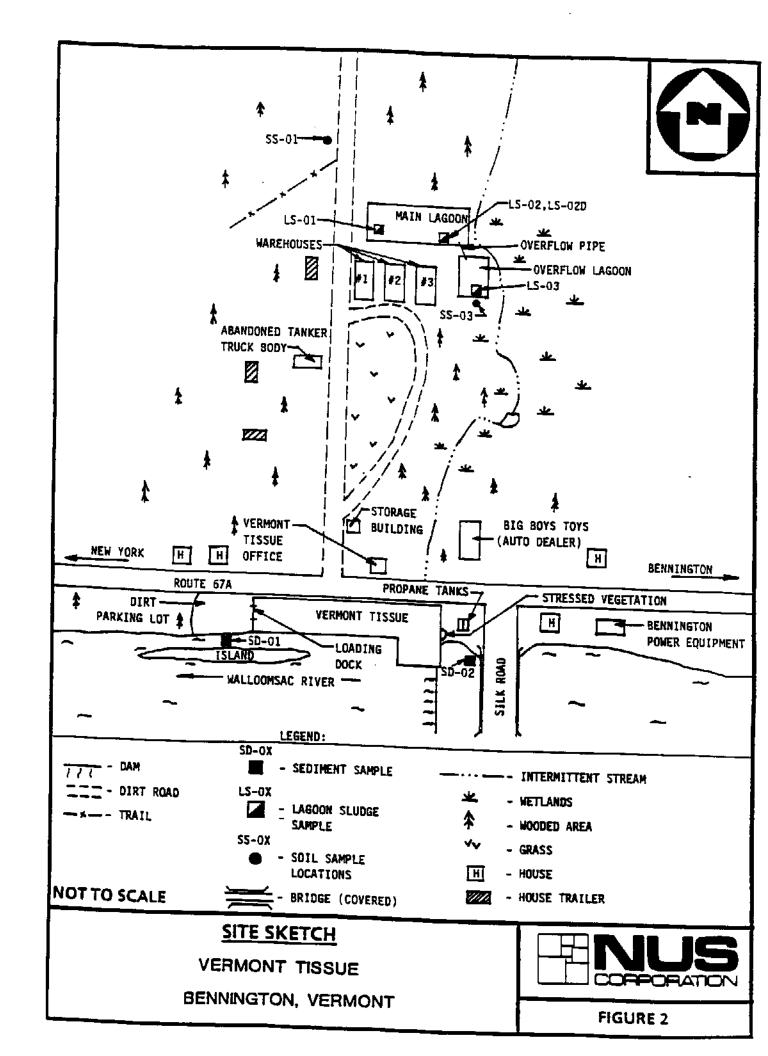
INTRODUCTION

The NUS Field Investigation Team (NUS/FIT) was requested by the Region I U.S. Environmental Protection Agency (EPA) Waste Management Division to perform a Screening Site Inspection of Vermont Tissue in Bennington, Vermont. All tasks were conducted in accordance with Technical Directive Document (TDD) No. F1-8903-17 which was issued to NUS/FIT on March 30, 1989. The Vermont Agency of Natural Resources (VT ANR) performed a Preliminary Assessment of this property in March 1988. On the basis of information provided in this Preliminary Assessment, the Vermont Tissue Screening Site Inspection was initiated.

Background information used in the generation of this report was obtained through file searches conducted at the VT ANR and at the EPA. Information was also collected during the onsite reconnaissance and field sampling activity conducted by NUS/FIT on October 11, 1989.

This package follows guidelines developed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended, commonly referred to as Superfund. However, these documents do not necessarily fulfill the requirements of other EPA regulations such as those under the Resource Conservation and Recovery Act (RCRA) or other federal, state or local regulations. Screening Site Inspections are intended to provide a preliminary screening of sites to facilitate EPA's assignment of site priorities. They are limited efforts and are not intended to supersede more detailed investigations.


SITE DESCRIPTION


Vermont Tissue is located along Route 67A, 4 miles northwest of the center of Bennington (pop. 14,700) and 2 miles southeast of the village of North Bennington (pop. 2,000), Vermont (Young, 1990b; USGS, 1954a) (Figure 1).

From 1940 to 1986, Vermont Tissue produced a low-grade tissue paper and used a system of unlined lagoons to contain wastewater generated in the tissue paper process. In 1986, Vermont Tissue ceased production of the low-grade tissue paper and use of the lagoon system. Vermont Tissue currently rewinds paper onto smaller rolls.

The site is approximately 12 acres in size and contains six buildings and two lagoons. The paper mill building is located on the south side of Route 67A and abuts the Walloomsac River. The office, storage building, warehouses and lagoons are located on the north side of Route 67A. The property is bounded by Bennington College less than 0.5 miles to the northwest and residential homes directly to the west. Commercial and residential areas are located to the east. On the south side of Route 67A, the brick paper mill building is bounded by Silk Road and commercial and residential areas to the east, the Walloomsac River to the south and a wooded area to the west (NUS/FIT, 1989) (Figure 2).

Located at the east end of the paper mill building is a large propane tank and three transformers attached to a telephone pole. Stained soil was observed at this location close to the side of the Vermont Tissue building during the NUS/FIT reconnaissance (NUS/FIT, 1989).

The three warehouses are set back from Route 67A. The rewound paper rolls are stored in the warehouses pending shipment. The main lagoon (175 feet by 225 feet) is located to the north behind the warehouses. The main lagoon had assorted vegetation growing on the lagoon sludge at the time of the NUS/FIT field activity. Vegetation covered various sections of the lagoon with no set pattern. Small fragments of paper were observed in the lagoon in addition to a milky- white colored water that had accumulated in low areas. The lagoon berms are approximately 5 to 6 feet in height. No signs of breaching were observed on any perimeter. Vegetation was prolific on the lagoon berms and throughout the surrounding property. The lagoon sludge was grayish in color and was very viscous in consistency when sampled (NUS/FIT, 1989). The lagoon depth could not be determined from available file information.

The overflow lagoon (50 feet by 100 feet) is located to the east of the warehouses and southeast of the main lagoon. The area in the overflow lagoon was heavily vegetated with small trees and shrubs predominating. The berms are less than 5 feet in height. Small fragments of paper were intermingled with the soil. The sludge was soft in some areas sampled. The top 2 inches of some lagoon sludge samples was gray, which graded to a coarse-grained dark colored soil below 2 inches. There were no signs of stressed vegetation or stained soil in the lagoon and warehouse areas. Access to the lagoon system is unrestricted. An intermittent stream was located to the east of the lagoon system during the NUS/FIT reconnaissance and sampling (NUS/FIT, 1989) (Figure 2).

A house trailer was located on the west side of the warehouses across a dirt road. The house trailer is on Vermont Tissue property and is owned by an employee of Vermont Tissue. A large unused underground oil tank was observed above-ground behind the storage building located northwest of the office. An abandoned tanker truck body was also observed on the west side of the dirt road leading to the warehouses and lagoons. What appeared to be a bermed pit was observed to the north of the house trailer. According to the president of Vermont Tissue, waste paper bales were stored in this area before the warehouses were built. A large coal pile was also situated in this area at one time (NUS/FIT, 1989).

SITE ACTIVITY/HISTORY

Vermont Tissue has been at its current location since approximately 1900. Prior to 1940, Vermont Tissue produced various paper products. The processes used prior to 1940 were not available in state files. Vermont Tissue produced a low-grade tissue paper from at least 1940 until February 1986. The low-grade tissue paper was produced from recycled paper products. Currently, Vermont Tissue purchases large rolls of paper and rewinds them onto smaller rolls. During the sampling round on October 11, 1989, NUS/FIT personnel observed that Vermont Tissue had started to produce printed paper on a limited basis for sale to the floral industry (NUS/FIT, 1989).

The process used by Vermont Tissue to produce the low-grade tissue paper required that articles such as newspapers and magazines be shredded, mixed with water and beaten into a pulp slurry. No dyes or bleaching agents are reported to have been used in the recycling process. The slurry was then pressed into a mat, passed through a vacuum box and steam dryers, and wound onto a reel. The water recovered from the drying process was the wastewater that was discharged to the onsite lagoons (VT ANR, 1988b).

Initially, wastewater from the recycling process was discharged directly into the Walloomsac River. The onsite lagoons are owned by Heller and Usdan of Moonachie, New Jersey, the parent company of Vermont Tissue and were constructed in the early to mid 1960s. After the lagoons were constructed, the wastewater was taken by tanker truck to the lagoons and discharged. More recently (date

unknown), an underground pipeline was used to discharge wastewater into the lagoons. In 1984, approximately 50,000 gallons/day were discharged to the lagoons. Vermont Tissue had a National Pollutant Discharge Elimination System (NPDES) permit for discharging into the Bennington wastewater treatment plant and did so for about 1.5 years in the early 1970's; however, the company eventually resumed using lagoons. From 1980 to 1985, Vermont Tissue had a NPDES permit (#VT0020524) (VT ANR, 1988b). All discharge was discontinued in 1986. Discharging methods overall have taken place for approximately 20 years.

Information on file at the VT ANR does not indicate the presence of liners beneath the lagoons. The lagoons were originally designed to function by infiltration and evaporation of wastewater. On April 8, 1975, and in the spring of 1984, during site visits by the Vermont Department of Water Resources and the VT AEC, respectively, it was observed that portions of the berm on the south end of the overflow lagoon had given way due to a "high water flow event" and that lagoon sludge was draining into a swamp and a small stream (Ouellette, 1975; Fitzgerald, 1984). Lagoon sludge and wastewater samples were collected by the VT ANR in September 1984 and June 1985. A Preliminary Assessment was prepared by the VT ANR in 1988 and recommended that a Site Inspection be performed at a medium priority. NUS/FIT, accompanied by the VT ANR, collected environmental samples at the Vermont Tissue property in October 1989.

Vermont Tissue was not listed as a RCRA notifier in the Hazardous Waste Data Management System (HWMS) Master Facility Listing, and information in state files regarding the characteristics of the waste generated by Vermont Tissue was not available (U.S. EPA, 1988). Characterization and qualification of wastes as RCRA hazardous waste can be accomplished by E.P. Toxicity, a laboratory analytical procedure. However, this analytical procedure was not performed on samples collected by NUS/FIT in October 1989.

ENVIRONMENTAL SETTING

The Bennington region is located physiographically in the Taconic Mountains, Vermont Valley, and Green Mountain sections of the New England Province (MacFayden, 1956). The city of Bennington is built on an area of extensive glacial outwash deposits (Shilts, 1966). Vermont Tissue is located in the Vermont Valley. The area around Vermont Tissue is comprised of forested rolling hills. The land use is rural residential and agricultural in most of the surrounding area (VT ANR, 1988b).

The area in and around the Vermont Tissue facility is underlain by thick deposits of coarse- grained stratified sediments and is inferred to have excellent groundwater potential (VT Department of Water Resources, 1966; VT Geological Survey, 1970).

Major geological structures in the area surrounding Vermont Tissue consist of a plunging anticline located approximately 0.5 miles northwest and a thrust fault located 0.75 miles southeast (MacFayden, 1956). Due to the large amount of sediments in the vicinity of the facility, the bedrock is inferred to consist of Paleozoic sediments or metasedimentary rock structures such as dolomite, limestone, quartzite, gneiss and slate which have been folded and fractured (MacFayden, 1956; Wright, 1975; USGS, 1983).

Depth to groundwater of the shallow surficial aquifer in the vicinity of the site is less than 25 feet below ground surface. Buildings on the south side of Route 67A are supplied water mainly by using well points or dug wells (VT ANR, 1988b). Available well logs indicate that several homes on the north side of Route 67A have bedrock wells. The closest downgradient well to the lagoons is a dug well (presumably overburden) serving Big Boys Toys, an auto store. This well is approximately 600 feet south southeast from the lagoons (VT ANR, 1988b).

Towns within 4 miles of Vermont Tissue include Bennington, North Bennington, Shaftsbury, and Hoosick, New York. Approximately 13,000 people residing in Bennington receive their water from

the Bolles Brook Reservoir located in Woodford, Vermont. However, Bolles Brook Reservoir is not located downstream from the facility. The backup water supply for Bennington is Morgan Spring which is located within 4 miles of Vermont Tissue. Table 1 lists community water supplies within a 4-mile radius of Vermont Tissue. Vermont Tissue receives its water from a spring located at Bennington College (VT ANR, 1988b). Only a small portion of Hoosick, New York is located within 4 miles of Vermont Tissue (Young, 1989). NUS/FIT has not determined the exact number of people served by private wells within 4 miles of Vermont Tissue, although the number is estimated to be about 3,000.

Review of aerial photos by the VT ANR indicates that the Vermont Tissue lagoons may be located in an old meander of the Walloomsac River. An intermittent stream flows southeasterly through the property and through a small wetland located a few feet east of the lagoons before discharging into the Walloomsac River (VT ANR, 1988a). From the Vermont Tissue property the Walloomsac River flows west 5 downstream miles through the villages of Walloomsac and North Hoosick, New York. From this point, the Walloomsac River flows 1 mile west/northwest until it converges with the Hoosic River just north of the village of Hoosick Junction (USGS, 1943; 1954a; 1954a; Anonymous, 1988). From this point the Hoosic River flows northwestward through the Taconic Mountains to the convergence of Whiteside Creek at approximately 15 miles downstream (Shilts, 1966). The Walloomsac River is used for fishing, and some swimming and canoeing (Young, 1990b).

The Vermont Natural Heritage Program (VT NHP) lists two species of special concern that are found in the Bennington Quadrangle: the Handsome Sedge (Carex formosa) and the Hairy Honeysuckle (Lonicera hirsuta) (Elliott, 1989).

RESULTS

The VT ANR collected wastewater samples from the pipeline outfall pipe in September 1984. Laboratory analysis detected benzene at 1 part per billion (ppb) and toluene at 4 ppb, and eight inorganic elements at total concentrations ranging from 2 ppb to 2820 ppb in one of the samples (Attachment G).

The VT ANR also collected lagoon sludge, and a wastewater sample from the pipeline outfall pipe in June 1985. Sludge samples were analyzed for total and dissolved metals and volatile organic compounds, and the wastewater sample was analyzed for dissolved metals and volatile organic compounds. The total concentration of elements ranged from 1 ppm to 347.0 ppm (zinc). Barium had the highest concentration of the seven dissolved metals detected (1525 ppb). No volatile organic compounds were detected (Attachment F).

In October 1989, the VT ANR collected two tap water samples from Big Boys Toys and a residential home, both of which are downgradient of the Vermont Tissue lagoons and are presumed to be dug wells (Attachment E) (VT ANR, 1989). No volatile organic compounds were detected in the tap water samples collected by the VT ANR. Maximum Contaminant Levels (MCLs) were not exceeded for the inorganic elements detected for which MCLs exist.

NUS/FIT collected two sediment samples, six lagoon sludge samples, including two dioxin blanks and one duplicate/replicate sample, and three soil samples including a blank and background sample in October 1989 (Table 2, Figure 2). A photoionization detector was used by NUS/FIT during field activities to monitor ambient air and detected no volatile organic or inorganic concentrations above the background concentration. A small area of stained soil was observed on the east side of the Vermont Tissue mill building.

All samples were analyzed for full organic compounds and inorganic elements. The lagoon sludge samples were also analyzed for dioxin and furan isomers. All samples were analyzed through the EPA Contract Laboratory Program (CLP). The complete analytical results and sample

TABLE 1
Community Water Supplies Within 4 Miles Of Vermont Tissue

<u>Town</u>	Public <u>Fown</u> <u>Supply Source</u>		ince/ from Site	Estimated Pop. Served	Well type/ Depth
Bennington (1)	Morgan Spring	3.5 miles	SE	13,000 (Backup Source)	Spring
Bennington (1)	Chapel Hill Trailer Park	3.0 miles	ΝE	80	Spring
Bennington (1)	Unabella Trailer Park-West Road 2 Wells	3.0 miles	S	82	Bedrock/390 feet
Total Population Served				13, 162	

Reference

(1) Young, 1990a

TABLE 2 SAMPLE SUMMARY

Vermont Tissue Bennington, Vermont

Sediment, soil and lagoon sludge samples collected by NUS/FIT on October 11, 1989.

Sample <u>Location</u>	Sample No./ Traffic <u>Report Nos.</u>	<u>Remarks</u>	Sample Source
SD-01	22531/ AQ775 MAN051	grab	N750W, 60 feet from SW corner of the Vermont Tissue building.
SD-02	22532/ AQ776 MAN052	grab	S50W, S5 feet from telephone pole at the SE corner of the Vermont Tissue building. Background.
LS-01	22533/ AQ777 MAN053 DA012015	grab 1.5 ft.	N250W, 100 feet from NW corner of warehouse #3.
LS-02	22534/ AQ778 MAN054 DA012016	grab 1.5 ft.	N49 ⁰ E, 55 feet from NE corner of warehouse #3.
L\$-02D/R	22535/ AQ779 MAN055 DA012017	grab 1.5 ft.	Same as LS-02. Volatiles collected as replicates, semi-volatiles and inorganics collected as duplicates.
LS-03	22536/ AQ780 MAN056 DA012018	grab 8 in.	Due east, 85 feet from SE corner of warehouse #3.
LS-04	22540/ DA012019	grab	Dioxin blank for quality control.
LS-05	22541/ DA012020	grab	Dioxin blank for quality control.
SS-01	22538/ AQ781 MAN058	composite/ grab 1 ft.	N10 ⁰ W, 100 feet from NW corner of warehouse #3. Background.

Sample <u>Location</u>	Sample No./ Traffic <u>Report Nos</u>	Remarks	Sample Source
SS-02	22539/ AQ782	grab	Soil blank for quality control.
SS-03	22537/ AQ783 MAN058	grab 1.5 ft.	S710E, 90 feet from SE corner of warehouse #3.

KEY:

AQ	-	denotes organic traffic report number
MAN	-	denotes inorganic traffic report number
DA	-	denotes dioxin traffic report number
SD	•	sediment sample
LS	_	lagoon sludge sample
SS	-	soil sample

NOTE:

N750W indicates magnetic compass bearing from known reference to sample location. Example: N750W indicates sample location is on a bearing 750 W of North.

quantitation/detection limits are provided in Attachments A - D. In addition to the complete analytical tables, a sample results summary table has been included in the text as Table 3. The results summary table compares any compound or element detected to the appropriate background (or upstream) sample. The table summarizes compounds or elements detected at greater or equal to three times the background sample concentration. However, if the element or compound was not detected in the background sample then the background sample quantitation/detection limit for that compound or element is used as a reference. If the concentration does not exceed three times the background sample detection limit, the element or compound is listed as being "Detected". Please note that samples from LS-01, LS-02 and LS-02D/R were primarily sludge, therefore, the analytical results were not compared to a reference value.

The soil sample from SS-03 was collected south of the overflow lagoon to determine whether contaminants had been released to the ground surface where the berm was breached. Four inorganic elements were detected at concentrations 3 to 56 times the background concentration.

Three inorganic compounds were detected in the sediment sample from location SD-01 at concentrations ranging from detected to 11 times the background or background detection limit. No volatile organic or semi-volatile organic compounds were detected in the sediment sample.

The lagoon studge sample from LS-03 collected from the overflow tagoon, was primarily soil. The concentration of compounds detected are compared to the soil background sample. Two inorganic elements were detected at concentrations ranging from 4 to 149 times the background.

Results of samples collected from the main lagoon (LS-01, LS-02(D/R)) indicates that the sludge is contaminated with six inorganic elements ranging from 67.10J parts per million (ppm) to 910.00 ppm. Phthalates were detected in the lagoon sludge samples at concentrations ranging from 1800J ppb to 180,000J ppb. Phthalates compose a large portion of the semivolatile organic compounds and are derived from the use of plasticizers. Toluene was detected at 26,000 ppb from LS-01. The origin of this volatile organic compound is not known.

The greatest number of compounds were detected from LS-01, in the main lagoon near the discharge pipe area. The least number were detected in the overflow lagoon.

Three dioxin isomers were detected in the lagoon sludge samples at concentrations ranging from 0.09 to 20.37 ppb (Attachments C and D).

The most toxic dioxin isomer is 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) with a toxicity equivalency factor (TEF) of 1. The dioxin/furan isomers detected have a TEF of less than 1. The toxicity of the dioxin/furan compounds detected at each sample location is a cumulative toxicity expressed as a 2,3,7,8-TCDD equivalence. The 2,3,7,8-TCDD equivalence for lagoon sludge samples collected at LS-01, LS-02, LS-02D/R, and LS-03 are 0.035 ppb, 0.02 ppb, 0.03 ppb, and 0.018 ppb, respectively.

There are no established numerical values for permissible exposure limits in air or permissible concentrations in water for dioxin. Dioxins persist in the environment and bioaccumulate in organisms (Sittig, 1981).

SUMMARY

Vermont Tissue produced a low-grade tissue paper for approximately 46 years from 1940 to 1986. No dyes or bleaches are known to have been used in the process. Wastewater from the process was discharged to two onsite lagoons for approximately 20 years. Access to the lagoons is unrestricted. The lagoons were designed to function by infiltration and evaporation of the wastewater. For an unknown period of time before the lagoons' construction, the wastewater was discharged to the Walloomsac River. Site inspections by the State of Vermont in 1975 and 1984 indicated that portions

TABLE 3
Sample Results Summary Table
Vermont Tissue Sampling October 11, 1989.

Sample <u>Location</u>	Compound/ Element	Concentration		Attachment A/ Analytical Table #	Comments	
SD-01	Calcium	31,000.00	mqq	3	5 times 8K	
	Copper	15.7	ppm	3	Detected	
	Lead	354.00J	ppm	3	11 times BK	
LS-03*	Bis(2-ethylhexyl)phthalate	2,400 J	ppb	2	6 times BKQL	
	Calcium	11,400	ppm	3	49 times BK	
	Lead	70.6 J	bbm	3 3	4 times BK	
SS-03	Di-n-butylphthalate	620	ppb	2	Detected	
	Bis(2-ethylhexyl)phthalate	620	ppb	2	Detected	
	Antimony	67.2 J	ppm	3	4 times 8KDL	
	Cadmium	5.1	ppm	3	5 times 8KDL	
	Calcium	12,900	ppm		56 times BK	
	Lead	54 J	ppm	3 3	3 times BK	
L5-01*	Toluene	26,000	ppb	1		
	Ethylbenzene	25	ppb	1		
	Xylene	6	ppb	1		
	Di-n-butylphthalate	3,200	ppb	2		
	Bis(2-ethylhexyl)phthalate	150,000 J	ppb	2		
	4-Methylphenol	8,700 J	ppb	2		
	Antimony	91.71	ppm	3		
	Chromium	75.3	ppm	3		
	Copper	178	ppm	3		
	Lead	320 J	ppm	3		
	Zinc	385	ppm	3		

TABLE 3 (Continued) Sample Results Summary Table

Vermont Tissue Sampling October 11, 1989.

Sample Location	Compound/ Element	Concentration	<u>1</u>	Attachment A/ Analytical Table #	Comments
LS-02*	Bis(2-ethylhexyl) phthalate Calcium Lead	41,000 J 910 151 J	dqq mqq	3	
LS-02D/R*	Di-n-butylphthalate Bis(2-ethylhexyl)phthalate Antimony Calcium Copper Lead	1,800 J 180,000 J 67.1 J 841 119 150 J	dqq mqq mqq mqq mqq	3 3	

SS Soil Sample =

SD = Sediment Sample

LS Lagoon Sludge Sample

ppm = parts per million ppb parts per billion

BKQL = **Background Quantitation Limit** BKDL = **Background Detection Limit**

ВК Background

Quantitation is approximate due to limitations identified during the Quality Control Review. Detected

= Compound/Element Detected. Sample concentration does not exceed 3 times the background sample concentration or detection/quantitation limit for this compound or element.

Lagoon sludge samples were analyzed for Dioxin and Furan Isomers. Analytical results can be found in Attachments C and D.

of the overflow lagoon berms had given way, sending wastewater into a swamp and small stream that abut the east side of the lagoons. Wastewater samples collected by the VT ANR in 1984 indicated the presence of benzene and toluene. The VT ANR collected lagoon sludge and a wastewater sample in 1985. Analysis indicated that seven inorganic elements were detected including barium and lead.

Two organic compounds were detected in soil samples collected by NUS/FIT. One of the two organic compounds, bis(2-ethylhexyl)phthalate was detected at 6 times the background reference value. Four inorganic compounds, antimony, cadmium, calcium and lead, were detected at concentrations ranging from 3 to 56 times background. Calcium and lead were detected at concentrations of 5 and 11 times the background, respectively, in the sediment sample collected by NUS/FIT.

Toluene was detected at 26,000 ppb at lagoon sludge sample location LS-01. Lead was detected at all the lagoon sludge sample locations at 150 J ppm to 320 J ppm. Dioxin isomers were detected in all of the lagoon sludge samples. Dioxin is associated with pulp and paper mill processes (U.S. EPA, 1987).

The Walloomsac River is a major receptor in the Vermont Tissue area and is used for fishing, canoeing and some swimming and is approximately 700 feet south of the lagoons. Over 13,100 people depend on private and municipal water services for their water supply in towns within 4 miles. The closest water well to the lagoons is approximately 600 feet south southeast. The VT ANR collected a tap water sample from this well during the NUS/FIT field activities on October 11, 1990. Laboratory results were within the current MCLs for all compounds/elements for which MCLs exist.

Based on the current analytical analyses from samples collected in October 1989, NUS/FIT recommends that a Listing Site Inspection (LSI) be performed.

Submitted By:

Project Manager

Approval: _

Røbert Jubach FII Office Manager

PY:aa

REFERENCES

Anonymous, 1988, New York State Atlas and Gazetteer, Freeport, Maine: DeLorme Mapping Company.

Elliott, J. (NUS/FIT). 1989. Letter from E. Marshall (Vermont Natural Heritage Program), RE: Critical habitats/sensitive environments. May 10. TDD No. F1-8903-17.

Fitzgerald, B. (VT AEC). 1984. Trip Report-Vermont Tissue. September 14.

MacFayden, J.A. Jr. 1956. The Geology of the Bennington Area, Vermont. Vermont Geological Survey. Bulletin No. 7.

NUS/FIT. 1989. (Issued). Logbook No. 89-1399. Vermont Tissue, TDD No. F1-8903-17.

Ouellette, R. 1975. (Vermont Department of Water Resources). Memo to file regarding site visit to Vermont Tissue concerning Vermont Tissue Pretreatment NPDES permit. April 8.

Shilts, W.W. 1966. The <u>Pleistocene Geology of the Bennington Area, Vermont.</u> Vermont Geological Survey. Open File Report No. 1966-5.

Sittig, M. 1981. <u>Handbook of Toxic and Hazardous Chemicals.</u> Park Ridge, New Jersey: Noyes Publications.

US EPA (Environmental Protection Agency). 1987. National Dioxin Study. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency; EPA/530-SW-87-025, August 1987.

US EPA (Environmental Protection Agency). 1988. Hazardous Waste Data Management System-Master Facility Listing. August 30.

USGS. 1943. Hoosick Falls Quadrangle, New York-Vermont, U.S. Geological Survey. 7.5' Series (Topographic).

USGS. 1954a. Bennington Quadrangle, Vermont. U.S. Geological Survey. 7.5' Series (Topographic).

USGS. 1983. Bedrock Geologic Map of Vermont, Sheet 1 of 3, 1983, Department of the Interior, USGS. E-an Zen, editor.

VT ANR. 1988a. Trip Report-Perimeter Survey of Vermont Tissue. February 19. Dave Shepard.

VT ANR. 1988b. Preliminary Assessment of Vermont Tissue Paper Corporation. March.

VT ANR. 1989. Laboratory results from tap water samples collected on October 11, 1989. Dave Shepard.

VT Geological Survey. 1970. Surficial Geologic Map of Vermont. Department of Water Resources. Charles G. Doll, editor.

VT Department of Water Resources and the U.S.G.S. 1966. Groundwater Favorability Map of the Batten Kill, Walloomsac River and Hoosic River Basins.

Wright, F.M. III. 1975. <u>Geology for Environmental Planning in the Bennington-Manchester Region, Vermont.</u> Vermont Geological Survey-Water Resources Department. Environmental Geology No. 6.

Young, P. (NUS/FIT). 1989. Telecon with Bill (Hoosick, NY Town Highway Department) RE: Water supply for Hoosick and surrounding area. TDD No. F1-8903-17, June 13.

Young, P. (NUS/FIT). 1990a. Telecon with D. Shepard, (VT ANR) RE: Public Water Supply-Bennington, Vermont. TDD No. F1-8903-17, January 15, 1425 hours.

Young, P. (NUS/FIT). 1990b. Telecon with P. Bohne, Bennington, Vermont, (Community Development Director) RE: Population of Bennington, North Bennington and uses of the Wallomsac River. TDD No. F1-8903-17, January 23, 0930 hours.

LIST OF ATTACHMENTS

ATTACHMENT A: Soil Sample CLP Analytical Results.

NUS/FIT October 11, 1989.

ATTACHMENT B: Soil Sample Organic and Inorganic

Quantitation/Detection Limits.

ATTACHMENT C: Dioxin/Furan Sample Analytical Results.

NUS/FIT October 11, 1989.

ATTACHMENT D: Dioxin/Furan Sample Detection Limits.

ATTACHMENT E: VT ANR Sampling Results October 11, 1989.

ATTACHMENT F: VT ANR Sampling Results June 12, 1985.

ATTACHMENT G: VT ANR Sampling Results September 14, 1984.

ATTACHMENT A

Soil Sample CLP Analytical Results NUS/FIT October 11, 1989

Table 1 - Volatile Organic Sampling Results
Table 2 - Extractable Organic Sampling Results
Table 3 - Inorganic Sampling Results

TABLE | PAGE 1 OF 1 VERMONT TISSUE OCTOBER 11, 1989

CLP VOLATILE ORGANIC ANALYSIS CASE NO. 12940, SDG NO. AQ775 SOIL/SEDIMENT/SLUDGE ANALYTICAL RESULTS (Ug/Kg)

Sample Location	\$5-01	SS-02	\$5-03	SD-01	SD-D2	LS-01	LS-02	LS-ÖZR	LS-03
Sample Number	22538	22539	22537	22531	22532	22533	22534	22535	22536
Traffic Report Number		! 	.	ľ	.1	1	12304	1 22535	22536
Report Nomber	AQ781	AQ782	AQ7B3	AQ775	AQ776	AQ777	AQ778	AQ779	AQ780
Remarks	Background	Blank			·			Replicate	ļ
Sampling Date	11-0CT-89	11-001-89	11-0CT-89	11~0CT-89			i	i	i
Analysis Date		17-0CT-89	17-0CT-89	17-0CT-89		11-0CT-89 17-0CT-89	11-0CT-89 17-0CT-89	11-001-89	11-0CT-89 17-0CT-89
OLATILE ORGANIC COMPOUND	—			<u></u>	<u> </u>				
hloromethane	-		<u></u>	İ			<u>. </u>		;
3romomethene				1	ļ		!		
/Inyl Chloride	i			!	ļ	!	ļ	İ	į
Chloroethane			1	!]	ĺ	ļ	Ì
lethylene Chloride	ì				!	!		1	İ
cetone	. .	33	!	ļ	į	ļ		1	
arbon Disulfide		33			!			1	
,1-Dichioraethene	ì		1					ľ	l
,1-Dichloroethane	i i								
,2-Dichloroethene (Total)	1							l i	
hlaroform	 							l i	
,2-Dichloroethane	1 1	i						i	
-Butanone	- i - i	ł		!				i	
.(.1-Trichloroethane	i i		ļ		ļ	ļ		İ	
arbon Tetrachloride	-	}	!		!	!	I	į	
inyl Acetate	[i			}	!	í	į	
romodichloromethane	1		ļ	Į	ļ			j	
,2-Dichloropropane	}	f			ļ	1	ĺ	İ	
is-1,3-0ichloroprapene	1			ļ	Ţ	1	İ	i	
richloraethene	·	!]		ł	İ	Ī	ì	
bromochloromethane	1		!	ļ	1		i	į	
, I, 2-Trichlorgethane	1	- [ļ	!	ļ	ŀ	ĺ	i	
enzene	j		!	-		i	į	i	
rans-1,3-Dichloropropene	1	!		ļ		Ī	İ	j	
romoform	1	1		Į.		1	i	i	
Methyl-2-pentanone		}			ļ	1	Ì	ì	
Нехалопе	1	10			!	1	j	ì	
trachloroethene	i i	10 }		!	ļ			i	
1.2,2-Tetrachloroethane	1	}		!	ļ		†	ĺ	
luene	i [5	1		1	}	· 1		
lorabenzene		, l	ł	1	ļ	26000	1	ĺ	
thy I benzene		5		!	Į]	†	ĺ	
yrene	[١ ٠	<u> </u>	1	ŀ	25	1	ĺ	
(lene (Total)	1 1	!	i		ļ		1	İ	
tal VOC Concentration (ug/Kg	oi i	53	ł		!	6 26031	!	į	

A blank space indicates the volatile organic compound (VOC) was not detected. Sample results are reported on a dry weight basis.

Sample Quanitation Limits for the compounds listed above are reported in Attachment 8 Table 1.

TABLE 2 PAGE 1 0F12 VERMONT TISSUE OCTOBER 11, 1989

CLP EXTRACTABLE ORGANIC ANALYSIS CASE NO. 12940. SDG NO. AQ775 SOIL/SEDIMENT/SLUDGE ANALYTICAL RESULTS (Ug/Kg)

Sample Location	55-01	\$5-03	SD-01	SD-02	LS-01	LS-02	LS-02D	LS-03	Ţ
Sample Number	22538	22537	22531	22532	22533	22534	22535	- 22536 	·
Traffic Report Number	AQ781	AQ783	AQ775	AQ776	AQ777	AQ778	AQ779	AQ780	.]
Remarks				-		74779	1	1	i .
	Background	ł	1	1		1	Duplicate		
Sampling Date	11-0CT-89	11-0CT-89	11-001-89	11-0CT-89	11-0CT-89	11-0CT-89	11-0CT-89	11-0CT-89	
Extraction Date	19-0CT-89	19-0CT-89	19-0CT-89	19-0CT-89	21-007-89	21-0CT-89	21-0CT-89	19-0CT-89	·
Analysis Date	13-NOV-89	14-NOV-89	13-NOV-89	13-NOV-89	14-NOV-89	14-NOV-89	14-NOV-89	13-NOV-89	
SEMI-VOLATILE COMPOUND	· [- 		-	·	-		·
Pheno1	·	ļ ————	·	-			-	.	·
bis (2-Chloroethyl) ether	i	i		ì	1	1	1		!
2-Chlorophenal	i	i	1	i	1	1		!	}
1.3-Dichlorobenzene	i		1	Ī	}	}	1	!	!
,4-Dichlorobenzene	1	i	ł	1	1	!	1	!	
Benzyl Alcahol	1		}	[!	!	ľ	ļ	!
.2-Dichlorobenzene]			;	1		ļ	ļ	
-Methy Ipheno!	1		}	<u> </u>	!		!	ļ	ļ
is (2-Chloralsopropyl)ether	i				!	ļ	!	ļ	į
-Methy phenal	i		ľ	ļ		ļ		j	ļ
-Nitroso-di-n-propylamine	! !		1	}	8700 J	ļ	ļ	ļ	ļ
exachioroethane	;		ļ	!	Į.	!	!	ļ	ļ
Itrobenzene	!		1	!		ļ	ļ	ļ	t
sophorone	}			!		į	ļ	Ī	
2-Nitraphenal			ļ	!		[İ		
2,4-Dimethylphenal	ł			!	1		ļ		ļ
Penzoic acid	ł l		1	!	!]	ļ	[1
ols (2-Chloroethoxy) methane	:		•	}	!		ļ	Į	1
.4-Dichlarophenol	-] 	!	1	ļ	ļ	ļ	1
,2,4-Trichlorobenzene			!	!	!	ļ	!	}	1
iaphthalene	!			!	[1	!	ļ	Į
-Chlorosofline	}			ŀ	1				1
exachiorobutadiene	}				!				
·Chloro-3-methylphengi	!						!]
-Methylnaphthalene									
exachlorocyclopentadiene					!		l		1
,4,6-Trichlarophenal]								į
.4.5-Trichlarophenal	!				!		!		
-Chloronaphthalene	1				[<u> </u>	i	1
-Nitroaniline							!		
							[İ	
imethylphthalate							ļ	İ	
cenaphthylene .6-Dinitratoluene	1						ĺ		
.o-vinitratoiuene					·		l i	ı	

TABLE 2 PAGE 2 OF 2 VERMONT TISSUE OCTOBER 11, 1989

CLP EXTRACTABLE ORGANIC ANALYSIS CASE NO. 12940, SDG NO. AQ775 SOIL/SEDIMENT/SLUDGE ANALYTICAL RESULTS (LIG/Kg)

Sample Location	55-01	22-03	\$0-01	SD-02	LS-01	L5-02	L.5-020	LS-03	
Sample Number	2253B	22537	22531	22532	22533	22534	22535	22536	
Traffic Report Number	AQ781	AQ783	AQ775	AQ776	AQ777	AQ778	AQ779	AQ780	
	ii			i					- -
Remarks	Background			1			Duplicate		
SEMI-VOLATILE COMPOUND									
3-Nitroaniline	¦								
Acenaphthene	i i		1)	!	
2.4-Dinitrophenol	i i		1				1	!	
4-Nitrophanol	<u> </u>		1	[ļ	l	Į
Dibenzofuran]]			ļ [!	•	!
2.4-Dinitrotoluene] [!			!	!	!
Diethylphthalate	ļ [!!			}	}	}
4-Chlorophenyl-phenylether	!		ļ	!!				<u> </u>	}
Flüorene	ļ Į			! !				1	
4-Nitroaniline	l [ļ	!			1	!]
4.6-Dinitro-2-methylphenol	!			!				}	
N-Nitrosodiphenylamine	!!			1				1	
4-Bramophenyl-phenylether	!!		!	}				}	
Hexachlorobenzene	!		!		ĺ		}	i	
Pentachlorophenol	!		1	260 J			i	ľ	
Phenanthrene	[200 3			i		
Anthracene		620	1	620	32000		1800 J	i	
Di-n-butylphthalate		620	}	380 J	32500				
Fluoranthene			ŀ	380 J	i				
Pyrene			ŀ	000 0	i		i		
Butylbenzylphthalate 3,3'-Dichlorobenzidine	1		i	i i	İ		į i		
Benzo(a)anthracens			i	190 J	İ		į ·		
Chrysene	İ		i	200 J	j				,
bis(2-Ethylhexyl)phthalate	i	620	[620	150000 J j	41000 J	1800D0 J	2400 J	
Di-n-octyl phthalate	i			i i	į				
Benzo(b)fluoranthene	i i		į	180 J	j				
Benzo(k)fluoranthene	i i		1	190 J	į		•		
Benzo(a)pyrene	i i		İ	190 J			1		
Indeno (1.2,3-cd)pyrane	i i		1	70 J	Į				
Dibenz(a,h)anthracene	l İ		1	ļ	1		1		
Benzo(g,h,i)parylane	i i		1	1 77 J j				i	

A blank space indicates the compound was not detected.

Sample results are reported on a dry weight basis.

Sample Quantitation Limits for the compounds listed above are reported in Attachment B Table 2.

J Quantitation is approximate due to limitations identified during the quality control review.

TABLE 3 Page 1 of 1 VERMONT TISSUE OCTOBER 10-11, 1989 CLP INDRGANIC ANALYSIS

CASE NO. 12940, SDG NO. MANO51 SDIL/SEDIMENT/SLUDGE ANALYTICAL RESULTS (mg/kg)

Sample Location		SS-01	55-03	SD-01	SD-02	LS-01	LS-02	LS-02D	LS-03
Sample Number		22538	22537	22531	22532	22533	22534	22535	22536
34mhia Mamper		1	1					<u> </u>	ļ
Traffic Report N	umber	MAND57	MAN058	MANOSI	MANO52	MAN053	MAN054	MAN055	MAN056
Remarks		Background						Duplicate	
Inorganic Elemen	ts	İ							
Aluminum	P	19800.00	11700.00	3990.00	5300.00	9140.00	15700.00	15700.00	12100.00
Ant Imany	p		67.20 J	i		91.70 J	ļ	67,10 J	
Arsenic	F	7.60 J	10.20 J	4.30 J	2.00 J	j	1,60 J	1.10 J	11.00 J
Barlum	P	53.20	85.10	34.20	55.90	53.00	61.70	64.00	83.80
Beryllium	P		1		Ì			[
Cadmium	Þ	i	5.10	ĺ	Ì	j	1	ļ	
Calcium	P	230.00 J	12900.00	31000.00	5710.00	510,00 J	910.00	841.00	11400.00
Chromium	P	21,40	17.80	4.30	6.10	75.30	37.80	43,20	20.30
Cobalt	P	16.60	12.90 J	11.40 J	12.80 J	j	ļ	!	11.00 J
Саррег	Р	37.60	46,80	15.70		178.00	93.90	119.00	43,50
Iron	P	34400.00 J	122200.DO J	12400.00 J	14200.00 J	465.DO J	1830.00 J	841.00 J	15300.00 J
Lead	P	14.40 J	54,00 J	354.00 J	30.30 J	320.00 J	151.00 J	150.00 J] 70.60 J
Magnestum	P	6290.00	7500.00	11000.00	3830.00		559.00	319.00 J	7960.00
Manganese	Þ	908.00 J	977.00 J	266.00 J	189.00 J	6.40 J	21.60 J	10.00 J	289.00 J
Mercury	٤v	İ			[<u> </u>	ļ
Nickel	P	29.20		12.10 J	12.40 J				15.50 J
Potassium	P	1070.00	1310.00	489.0 ₄ 0 J	1090.00				935.00
Selenium	F	•			Į				!
Sliver	P	Ì			1,60				
Sodium	₽]			!	!			<u> </u>
Thallium	F	0.37 J	D.53 J	0.60 J	0.60 J	'		0.78 J	
Vanadium	P	(8,10	19.80	6.90	9.30	30.20	31.70	29.80	16.20
Zinc '	Þ	77.40	140.00	55.30	82.30	385.00	175.00	228.00	113.00
Cyanide	C) NA	NA	NA NA	NA	NA	NA -	NA.	NA.

Analytical Method

F Furnace

P ICP/Flame AA

CV Cold Vapor

C Colorimetric

NOTE:

A blank space indicates the element was not detected.

Sample results are reported on a dry weight basis.

J Quantitation is approximate due to limititations identified in the quality control review.

NA Not Analyzed

Sample Detection Limits for the elements listed above are reported in Attachment B Table 3.

ATTACHMENT B

Soil Sample Organic and Inorganic Quantitation/Detection Limits NUS/FIT October 11, 1989

Table 1 - Volatile Organic Sample Quantitation Limits
Table 2 - Extractable Organic Sample Quantitation Limits
Table 3 - Inorganic Sample Detection Limits

TABLE 1 PAGE 1 OF 1 VERMONT TISSUE OCTOBER 11, 1989 CLP VOLATILE ORGANIC ANALYSIS

CASE NO. 12940. SDG NO. AQ775 SOIL/SEDIMENT/SLUDGE SAMPLE QUANTITATION LIMITS (Ug/Kg)

Sample Location	88-01	\$5-02	\$5-03	SD-01	SD-02	LS-01	LS-02	LS-02R	LS-03
Sample Number	22538	22539	22537	22531	22532	22533	22534	22535	22536
Traffic Report Number	AQ781	AQ782	AQ783	AQ775	AQ776	AQ777	AQ778	AQ779	AQ780
Remarks	Background	Blank	·	· 		·	ļ 	Duplicate	
VOLATILE ORGANIC COMPOUND				·		.	·	-	ļ -
Chloromethane	12	10	19	12	19	32	14	- 	16
Bromomethane	12	10	19	1 12	l 19	32	14	17	16
Vinyl Chloride	12	10	ij	1 12	i iš	32	14	17	1 16
Chloroethane	1 12	10	i is	1 12	i i <u>š</u>	32	1 14	17	l 16
Methylene Chioride	1 12	iŏ	iğ	1 12	19	100	14	1 116	78
Acetone	1 12	io	19	1 12	19	32	14	1 17	1 16
Carbon Disulfide	8	5	9	l '6	9	16	7	1 16	10
1,1-Dichloroethene	6	5	j	6	9	16	1 1	, ,	1 8
1,1-Dichloroethane	6	5	9	0			1 /	, ,	, ,
1,2-Dichlorgethene (Total)	6	5	9		9	16	1 /	, B	. 8
Chloroform	6	5	-	6	9	16	I I	i R	. 8
1.2-Dichloroethane	6	5 5	9	6	9	16	1 7	l B	8
•	12	10	9	6	9	16	! .7	8	8
2-Butanone			19	12	19	32	14	17	16
1,1,1-Trichloroethane	6	5	9	5	9	16	7	[8]	8
Carbon Tetrachloride	6	5	9	6	9	16	7	9 [В
Vinyl Acetate	12	10	19	12	19	32	14	17	16
Bromodichloromethane	6	5	9	6	9] 16	7	8	8
1,2-Dichloropropane	. 6	5	9	6	9	16	7	8	8
cis-1,3-Dichloropropene	[6]	5	9	6	9	16] 7	B	8
Trichloroethene	6	5	9	6	9	16	1	B	8
Dibromochioromethane	6	5) 9	6	9	16	7	l Bi	8
1,1,2-Trichloroethane	6	5	j 9	6	9	16) 7	8	8
Benzene	6	5	9	6 1	9	16	7	8 1	8
trans-1,3-Dichloropropene	6	5	9	6	9	16	7	i a i	B
Bromoform ,	16	5	9	j 6 j	9	16	7	i e i	В
4-Methy1-2-pentanone	12	10	19	12	19	32	14	1 17 1	16
2-Hexanone	12	10	ĺ 19	12	19	j 32	14	i in i	16
Tetrachloroethene	6 i	5	9	6	9	16	7	j ä i	. В
1,1,2,2-Tetrachloroethane	6	5	į §	iši	ğ	16	7	1 6 1	8
Toluene	6	5	i š	6	ğ	810	7	1 8 1	8
Chlarobenzene	6	5	9	6	9	16	7		8
Ethylbenzene	6	5	9	6	9	16	, ,	8	о В
Styrene	6	5	į į	6	9	16	, ,		_
Xylene (Total)	6	5		6	9	1 16	7	8	8
Total VOC Concentration (ug/Kg)		Þ	1 7	· •	9	, 'B	,	8	8
iotal voc concentration (ug/kg)			ļ	! !		Į l		1	

Sample Quanitation Limits are reported on a dry weight basis,

TABLE 2 PAGE 1 DF 2 VERMONT TISSUE

OCTOBER 11, 1989 CLP EXTRACTABLE ORGANIC ANALYSIS CASE NO. 12940, SDG NO. AQ775 SOIL/SEDIMENT/SLUDGE SAMPLE QUANTITATION LIMITS (ug/Kg)

Sample Location	\$\$-01	SS-03	SD-01	SD-02	LS-Di	LS-02	LS-02D	LS-03	Ţ
Sample Number	22538	22537	22531	22532	22533	22534	22535	22536	-
Traffic Report Number	AQ781	AQ783	AQ775	AQ776	AQ777	AQ778	AQ779	AQ780	
Remarks	Background						Duplicate		
SEMI-VOLATILE COMPOUND				-		-			
Phenol	400 UJ	BZO UJ	400 UJ	620 VJ	32000 UJ	13000 UJ	17000 03	530 UJ	·]
bis (2-Chlaroethyl) ether	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	
2-Chlorophenol	400 UJ	620 UJ	400 UJ	620 UJ	32000 NT	13000 111	17000 UJ	530 UJ	1
1,3-Dichlorobenzene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 บม	
1,4-Dichlorobenzene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	ļ
Benzyl Alcohol	400 UJ	620 UJ .	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	1
1,2-Dichlarobenzene	400 UJ	620 UJ	400 UJ	620 N1	32000 UJ	13000 UJ	17000 UJ	530 ยูง	ļ
2-Methylphenot	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	53 0 UJ	
bis (2-Chloro(sopropyl)ether	400 UJ	620 UJ	400 UJ	620 UJ	35000 NY	13000 UJ	17000 UJ	530 UJ	1
4-Methylphenal	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	1
N-Nitroso-di-n-propylamine	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	1300D UJ	17000 UJ	530 ยป	1
Hexachloroethane	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	1300D UJ	17000 UJ) 530 UJ	1
Nitrobenzene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	1300D UJ	17000 UJ	530 UJ	1
Isophorone	400 UJ	620 UJ	100 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	j
2-Nitrophenol	1 400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 N7	17000 UJ	530 UJ	!
2,4-Dimethylphenol	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	1 30 00 UJ	17000 UJ	530 UJ	
Benzoic acid	2000 UJ	3100 UJ	2000 UJ	3100 UJ	160000 UJ	67000 UJ	84000 UJ	2600 UJ	1
bis (2-Chloroethoxy) methane	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	1700B UJ	530 UJ	
2.4-Dichlarophenal	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	
1,2,4-Trichlorobenzene	400 UJ	620 UJ	400 UJ	620 UJ	j 32000 n7 j	13000 UJ	17000 UJ	53 0 UJ	İ
Naphthalene	400 UJ	620 UJ 1	400 UJ	620 UJ	32000 NJ	13000 UJ	Í 17000 UJ Í	530 UJ	i
4-Chigroaniiine	400 UJ	62D UJ	400 UJ	Î 620 UJ	32000 03	13000 UJ	17000 NJ	530 UJ	İ
Hexachlorobutadiene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	İ
4-Chlaro-3-methylphenol	i 400 UJ i	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	Í
2-Methylnaphthalene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ I	1300D UJ	17000 00 1	530 UJ	Í
Hexachlorocyclopentadiene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ I	1300D UJ	17000 UJ	530 UJ	i
2.4.6-Trichlorophenol	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	1300D UJ	17000 00	530 UJ	i
2,4,5-Trichlorophenoi	2000 UJ	3100 UJ	2000 UJ	3100 UJ	160000 UJ	6700D UJ	84000 UJ	2600 UJ	i
2-Chloronaphthalene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	í
2-Nitroaniline	2000 UJ	3100 UJ	2000 UJ	3100 UJ	160000 UJ	67000 UJ	84000 UJ	2600 UJ	ĺ
Dimethylphthalate	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	ĺ
Acenaphthylene	400 UJ	620 UJ	400 ŬJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	i
2.6-Dialtrotaluene	400 UJ	620 ÚJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	i
		120 00		1	33333 30	. 3200 00	1	555 55	ĺ
	· '			· _	·		¹'		<i>'</i>

TABLE 2 PAGE 2 OF 2 VERMONT TISSUE OCTOBER 11, 1989

CLP EXTRACTABLE ORGANIC ANALYSIS CASE NO. 12940, SDG NO. AQ775

SOIL/SEDIMENT/SLUDGE SAMPLE QUANTITATION LIMITS (ug/Kg)

Sample Location	\$\$-01	55-03	SD-01	SD-02	LS-01	LS-02	LS-02D	L5-03	1
Sample Number	22538	22537	22531	22532	22533	22534	22535	22536	·
Traffic Report Number	AQ781	A0783	AQ775	AQ776	-	l		_ j	. <u> </u>
	1 ~4,0,	1 40/03	A4175	AU//B	AQ777	AQ778	AQ779	AQ780	!
Remarks	Backpround			·	· [———		Duplicate	-	·
SEMI-VOLATILE COMPOUND	i — — ,		·	-	·	<u> </u>			·
3-Nitroaniline	<u> </u>	3100 03	2000 UJ	3100 00	160000 UJ		- 	-	
Acenaphthene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	67000 UJ	84000 UJ	2600 UJ	ļ
2,4-Dinitrophenol	2000 UJ	3100 UJ	2000 03	3100 UJ	.160000 UJ	13000 UJ	17000 UJ	530 UJ	
4-Nitraphenal	2000 UJ	3100 UJ	2000 00	3100 03	160000 UJ	67000 UJ	84000 UJ	2600 UJ	Ī
Dibenzofuran	400 UJ	620 UJ	400 UJ	620 03	32000 UJ	67000 UJ	84000 UJ	2600 UJ	1
2.4-Dinitrotoluene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	!
Piethylphthalate	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	230 N1	!
I-Chloropheny I-pheny Lether	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	53D UJ	ļ
lugrene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	
-Nitroanliine	2000 00	3100 01	2000 00	3100 01	160000 UJ	67000 UJ	17000 UJ	530 UJ]
.6-Dinitro-2-methylphenol	2000 UJ	3100 UJ	2000 00	3100 UJ	160000 03	67000 UJ.	84000 UJ	2600 UJ	
I-Nitrasodiphenylamine	400 UJ	620 UJ	400 UJ	62D UJ	32000 UJ	1300D UJ	84000 UJ	2600 UJ	
-Bromopheny -pheny ether	400 UJ	620 UJ	400 UJ	62D UJ	32000 UJ	13000 03	17000 UJ	530 UJ	Į
lexach Lorobenzene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	
entachlorophenol	2000 UJ	3100 01	2000 UJ	3100 UJ	1 160000 05	67000 UJ	17000 UJ	530 UJ	!
henanthrene	400 UJ	620 UJ	400 UJ	620 UJ	32000 03	13000 UJ	84000 UJ	2600 UJ	!
nthracene	100 01	620 UJ	400 UJ	620 UJ	32000 UJ		17000 UJ	530 UJ	ļ
i-n-butylphthalate	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ 1	13000 UJ	17000 UJ	530 UJ	
luoranthene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	
yrene i	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	
iuty Ibenzy I phthalate	400 ÚJ	620 UJ	400 UJ	620 NT		13000 UJ	17000 UJ	530 ย	
.3'-Dichlorobenzidine	810 00	1200 UJ	800 N7	1200 UJ	32000 UJ	13000 UJ	17000 UJ	530 NJ	
enzo(a)anthracene	400 UJ	620 UJ	400 UJ	620 UJ	65000 UJ	27000 UJ	34000 UJ	1100 N1	
hrysene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 LU LU 00001	17000 UJ	530 UJ	
is(2-Ethylhaxyl)phthalate	400 UJ	620 NJ	400 UJ	620 UJ	32000 UJ	13000 03	17000 UJ	530 UJ	
I-n-octyl phthalate	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 03	17000 UJ	530 บ.)	
enzo(b)fluoranthene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ		17000 UJ	530 UJ	
enzo(k)fluoranthene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 UJ	
enzo(a)pyrene	400 UJ	620 UJ	400 UJ	620 UJ	32000 UJ	13000 UJ	17000 UJ	530 มม	
ndeno (1,2,3-cd)pyrene	400 UJ	620 UJ	400 UJ	620 UJ		13000 UJ	17000 UJ	530 UJ	
ibenz(a,h)anthracens	400 UJ	620 UJ	400 UJ	650 A7	32000 UJ	1300D UJ	17000 UJ	530 UJ	
lenzo(g,h,i)parylene	400 UJ	62D UJ	400 UJ	620 UJ		13000 UJ	17000 UJ	530 UJ	
	700 00	025 00	לע טטר	020 03	32000 UJ	13000 07	17000 UJ	530 UJ	

Sample Quantitation Limits are reported on a dry weight basis.

UJ Quantitation Limit is approximated due to limitations during the quality control review.

TABLE 3 Page 1 of 1 VERMONT TISSUE OCTOBER 10-11, 1989 CLP INORGANIC ANALYSIS

CASE NO. 12940, SDG. NO. MAND51 SOIL/SEDIMENT/SLUDGE SAMPLE DETECTION LIMITS (mg/kg)

Sample Location			\$5-01	\$5-03	50-01	SD-02	LS~01	LS-02	LS-02D	LS-03
Sample Number			22538	22537	22531	22532	22533	22534	22535	22536
***				!	<u></u>	l	·	<u> </u>	İ	į
Traffic Report N	umber		MAN057	MAN058	MANO51	MAN052	E20MAM	MAN054	MAN055	MAND56
Remarks	· ······	· · · ·	Background		[i ————			Duplicate .	
Percent Solids		·	84.4%	49.7%	78,9%	61.4%	21.0%	39,7%	40.5%	66.6%
		Instrument	İ 		<u> </u>		·			
Inorganic Elemen	ts	Detection Limits (ug/L)								
Aluminum	Р	30.00	7.11	12.07	7.60	,9.77	28,57	15.11	14.81	9.01
Antimony	₽	58.00	13.74	23.34	14.70	18.89	55.24	29.22	28.64	17.42
Arsenic	F	1.00	0.24	0.40	0.25	0.33	0.95 UJ	0.50	0.49	0.30
Bartom	Р	16.DQ	3.79	5.44	4.06	5,21	15.24	8.06	7.90	4,80
Beryllium	þ	2.00	0.7	0.80	0.51	0.65	1.90	1,01	0.99	0.60
Cadmium	Þ	4.00	0.95	1,61	1.01	1.30	3.81	2.02	1.98	1,20
Calcium	P	471.00	111.61	189.54	119.39	153,42	448.6D	237.28	232.59	141.44
Chromium	P	7.00	1.66	2.82	1,77	2.28	6,67	3.53	3.46	2.10
Cobalt	₽	21.00	4.98	8.45	5,32	13.6	20.00	10.58	10.37	6.31
Copper	P	7.00	1.66	2.82	1.77	15.10	6.67	3.53	3.46	2.10
Iron	Р	11.00	2.61	4.43	2.79	3.58	10.48	5.54	5,43	3.30
Lead	P	61.00	14.45	24.55	15.46	19.87	58.10	30.73	30.12	18.32
Magnes tum	P	515.00	122.04	207,24	130.54	167,75	490.4B	259.45	254.32	154.65
Manganese	P	5.00	1.18	2.01	1.27	1.63	4.76	2.52	2.47	1.50
fencury	cv	0.10	0.06	0.14	0.06	0.08	0.24	0.21	0.12	0.08
(fcke)	P	39.00 [9.0	15.3	9.6	12.4	36.2	19.65	18.8	11.4
Potassium	P	1478.00	350.24	594.77	374.70	481.43	1407.62	744.58	729.88	443.84
Selentum	F	1.00	0.24 UJ	0.46 UJ	0.36 UJ	0.33 UJ		0.50 UJ	ונט 49.0	0.30 0)
illver	٩	5.00	1.18	2.01	1.27	1.63	4.76	2.52	2.47	1.50
Sadtum	, P	(449.DD	343.36	583.10	367.30	471.99	1380.00	729,97	715.56	435.14
hall lum	` F	1.00	0.24	0.40	0.25	0.33	0.95	0.50	0.49	0.30
/anadium	P	10.00	2.37	4.02	2.53	3.25	9.52	5.04	4.94	3.00
the	Ρļ	12.00	2.84	4.83	3.04	3.91	11.43	6.05	5.93	3.60
Cyan i de	C	NA	NA	NA	NA	NA	NA .	NA .	NA NA	NA NA

F Furnace AA

P ICP/Flame AA

CV Cold Vapor

C Colorimetric

NOTE:

Sample detection limits are reported on a dry weight basis.

UJ The detection limit is approximated due to limitations identified in the quality control review (data validation).

NA Not Analyzed.

ATTACHMENT C

Dioxin/Furan Sample Analytical Results NUS/FIT October 11, 1989

Table 1 - Dioxin/Furan Sampling Results

TABLE 1 Page 1 of 1 VERMONT TISSUE OCTOBER 11, 1989 CLP DIOXIN/FURAN ANALYSIS CASE NO. 12940, SAS NO. 4986A SOIL ANALYTICAL RESULTS (ng/g)

Sample Location	r.g.gi	LS-02	LS-02D	LS-03	LS-04
Sample Number	22533	22534	22535	22536	22541
Traffic Report Number	DAD12015	DA012016	DAG12017	DAD12018	DA012019
Remarks		 	Duplicate		Blank
Sampling Date Extraction Date Analysis Date	10/11/89 10/19/89 10/27/89	10/11/89 10/19/89 10/27/89	10/11/89 10/19/89 10/27/89	10/11/89 10/19/89 10/27/89	10/11/89 10/19/89 10/27/89
DIOXIN/FURAN					ļ — — — — — — — — — — — — — — — — — — —
2.3.7.8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) 1.2.3.7.8-pentachlorodibenzo-p-dioxin (1,2,3,7,8-PeCDD) x.x.2.3.7.8-hexachlorodibenzo-p-dioxin (x,x.2,3,7,8-HxCDD) 1.2.3.4.6.7.8-heptachlorodibenzo-p-dioxin (1,2,3,4.6.7.8-HpCDD) 1.2.3.4.6.7.9-heptachlorodibenzo-p-dioxin (1,2,3,4.6.7.9-HpCDD) 1.2.3.4.6.7.9-heptachlorodibenzo-p-dioxin (1,2,3,4.6.7.9-HpCDD) 1.2.3.7.8-tetrachlorodibenzofuran (2,3,7,8-TCDF) 1.2.3.7.8-pentachlorodibenzofuran (x,2,3,7,8-PeCDF) 1.2.3.7.8-hexachlorodibenzofuran (x,x.2,3,7,8-HxCDF) 1.2.3.7.8-hexachlorodibenzofuran (x,x.2,3,7,8-HxCDF) 1.2.3.7.8-heptachlorodibenzofuran (x,x.2,3,7,8-HyCDF) 1.2.3.7.8-heptachlorodibenzofuran (x,x.2,3,7,8-HyCDF) 1.2.3.7.8-heptachlorodibenzofuran (x,x.2,3,7,8-HyCDF)	R 1.51 1.60 20.37	1.25 1.18 11.68	1.52 1.47 15.12	0.73 8.06 0.09	
2,3,7,8-TCDD Equivalence	0.035	0.02	0.03	0.18	0.00

A blank space indicates the compound was not detected. Sample results are reported on a dry weight basis.

R Value is rejected.

Sample detection limits for the isomers listed above are reported in Attachment D Table 1.

ATTACHMENT D

Dioxin/Furan Sample Detection Limits NUS/FIT October 11, 1989

Table 1 - Dioxin/Furan Detection Limits

TABLE 1 Page 1 of 1 VERMONT TISSUE OCTOBER 11, 1989 CLP DIOXIN/FURAN ANALYSIS CASE NO. 12940, SAS NO. 4986A SOIL SAMPLE DETECTION LIMITS (ng/g)

Sample Location	LS-01	LS-02	LS-02/D	LS-03	L5-04
Sample Number	22533	22534	22535	22536	22541
Traffic Report Number	DA012015	DA012016	DA012017	DA01201B	DA012019
Remarks			Duplicate	<u> </u>	Blank
Sampling Date	10/11/89	10/11/89	10/11/89	10/11/89	10/11/89
Extraction Date	10/19/89	10/19/89	10/19/89	10/19/89	10/19/89
Analysis Date	10/27/89	10/27/89	10/27/89	10/27/89	10/27/89
DIOXIN\FURAN		· · · · · · · · · · · · · · · · · · ·	j	<u></u>	
2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD)	0.44	0.16	0.31	0.08	0.04
1,2,3,7,8-pentachlorodibenza-p-dioxin (1,2,3,7,8-PeCDD)	0.31	0.30	0.26	0.13	0.08
x.x.2.3.7.8-hexachlorodibenzo-p-diaxin (x,x,2,3,7,8-HxCDD)	R	0.29	0.17	0.12	0.03
1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (1,2,3,4,6,7,8-HpCDD)	- '			0.35	0.08
1,2,3,4,6,7,9-heptachlorodibenzo-p-dioxin (1,2,3,4,6,2,9-HpCDD)	-	_	i - i	-	4.00
octachlorodibenzo-p-diaxin (OCDD)	-	_	i - i	_	0.14
2.3.7.8-tetrachlorodibenzofuran (2,3.7.8-TCDF)	0.16	0.14	0.27	-	0.04
x.2.3.7.8-pentachlorodibenzofuran (x.2.3.7.8-PeCDF)	0.34	0.25	0.19	0.09	0.02
x,x,2,3,7,8-hexachlorodibenzofuran (x,x,2,3,7,8-HxCDF)	0.31	0.17	0.28	0.10	0.03
x,x,x,2,3,7,8-heptachlorodibenzofuran (x,x,x,2,3,7,8-HpCDF)	0.25	0.21	0.35	R	0.05
octachlorodibenzofuran (OCDF)	1.92	0.98	1,12	- "	0.13

Sample Detection Limits are reported on a dry weight basis.

⁻ The detection limit is not known.

ATTACHMENT E

VT ANR Sampling Results October 11, 1989

State of Vermont

AGENCY OF ENVIRONMENTAL CONSERVAT

Department of Fish and Wildlife
Department of Forests, Perks and Recreation
Department of Water Resources & Environmental Engineering
Natural Resources Conservation Council
State Geologist

103 South Main S Waterbury, Vermont 03 Department of Water Resou and Environmental Engineerin

Dept. of Water Resources Lab Management System Remarks Code

REMARKS CODE	TITLE CODE
A D	SAMPLE LOST DUE TO LABORATORY ACCIDENT DETERMINED PRESENT, BUT NOT QUANTIFIED ESTIMATED VALUE
E F H	FURNACE TECHNIQUE HEED ON THE
Î J	INTERFANCE DUE TO CUELLAND
M P	TEST LOGGED IN BY MISTAKE SAMPLE NOT PROCESSED
Q R S	TEST COMPLETED BUT DESCRIPTION
ĭ	POSITIVE RESULTS REPORTED
V X	ONLY UNIDENTIFIED PEAKS FOUND UNITS ARE VOLUME/VOLUME RESULTS NOT CONFIRMED
Z 3	MULTIPLY RESULTS OF ALL TESTS
6	MULTIPLY RESULTS BY 1,000,000

VT. DEPT. ENVIRONMENTAL CONSERVATION LABORATORY

DATA SHEET FOR VOLATILE ORGANICS - WATER
ANALYST: SKL REMARKS CODE 801W: M
SITE: T.B.
DATE COLLECTED: 10-11-89

	•	Approximate Detection Limit	Detected at
*VW07	***	<u>ug/1</u>	<u>ug/1</u>
*VW08		10	ND
*VW09		10	NID
		10	NTD
. AHTO	Chloroethane	10	ND
*VW11		10	M
	Acetone	50	ND
VW13		2	ND ND
*VW14	Carbondisulfide	2	ND ND
VW15	Methylene Chloride	2	-
VW16	Methyl-t-Butylether (MTRE)	10	ND
VW17	1,2-Dichloroethene	2	ND
VW18	1,1-Dichloroethane	2	ND
		4	ND
*VW19	· 4	50	ND
VW21		50	ND
VW22	Chloroform	2	ND
VH22	1,1,1-Trichloroethane	2	NID
VW23	Carbon Tetrachloride	2	ND
VW24	Benzene	2	ND ND
VW25	1,2-Dichloroethane	2	ND ND
VW26	Trichloroethene	2	ND ND
VW27	1,2-Dichloropropane	•	
VW28	Bromodichloromethane	2 2	ND
*VW29	4-Methyl-2-Pentanone	·	ND
*VW30	Cis-1,3-Dichloropropene	20	ND
		2	ND
VW31	Toluene	2	MD
*VW32	TOTAL TOTOPETIA	2	ИD
VW33	1,1,2-Trichloroethane	2	ND
*VW34	2-Hexanone	20	ND
VW35	Tetrachloroethene	2	
VW36	Dibromochloromethane	2	ЙD
VW37	Chlorobenzene	2	ЖD
8EWV	Ethylbenzene	2	ND
••		2	ND
VW39	Xylenes	2	ND
*VW40 VW41	Styrene	2	ИD
	Bromoform	2	ND
VW42		2	D D
TVH		100	מא
REMARK	detected when methods 801W a	nd 802W are rum.	
		and are Im.	•••••
SURROG	ATE RECOVERTES		

VT. DEPT. ENVIRONMENTAL CONSERVATION LABORATORY DATA SHEET FOR VOLATULE OPERATORS

SAMPLE NUMBER: 47478	ANALYST: S'R. REMARKS CODE DILUTION FACTOR: 1	801W: M 802W: M 824W: Z	
----------------------	---	-------------------------------	--

		Approximate Detection Limit	Detected at
****		<u>ug/1</u>	<u>ug/1</u>
*VW07		10	ND
*VW08		10	מוא כ
	Bromomethane	10	ND
-VW10	Chloroethane	10	ND
*VW11	Trichlorofluoromethane	10	ND
	Acetone	50	ХD
VW13		2	ND
*VW14	Carbondisulfide	2	ND
VW15	Methylene Chloride	2	
VW16	Methyl-t-Butylether (MTBE)	10	ХD
VW17	1,2-Dichloroethene	2	710
VW18	1,1-Dichloroethane	2	ND ND
*VW19	Vinyl Acetate	50	
*VW20	2-Butanone	50	ХD
VW21		2	XID ,
VW22	1,1,1-Trichloroethane	2	ND
		•	ND
VW23	Carbon Tetrachloride	2	\ T
VW24	Benzene	2	ND
VW25	1,2-Dichloroethane	2	知
VW 26	Trichloroethene	2	ND
		•	ND
VW27	1,2-Dichloropropane	2	
VW28	Bromodichloromethane	2	ND
"VW29	4-Methyl-2-Pentanone	20	ND
*VW30	Cis-1,3-Dichloropropene	2	ND .
VW31	Toluene	_	
*VW32	Trans-1,3-Dichloropropene	2	ИD
VW33	1,1,2-Trichloroethane	2	ND
*VW34	2-Hexanone	2	ND ND
		20	ND
VW35	Tetrachloroethene	2	NTS.
VW36	Dibromochloromethane	2	ND
VW37	Chlorobenzene	2	ND
VW 38	Ethylbenzene	2	ND ND
VW39	Xylenes	2	
*VW40	Styrene	2 2	ND
VW41	Bromoform	2	ND
VW42	1,1,2,2,-Tetrachloroethane	2	ND
TVH	Total Volatile Hydrocarbons	100	NID
* Not	detected when methods 801W a	nd 802W are run	ND
ALIMAKK.	3	·····	* * * * * * * * * *

VT. DEPT. ENVIRONMENTAL CONSERVATION LABORATOR

DATE:	-	10-18-89 Senecal	DATA SHEET FOR VOLATILE ORGANICS - WATER ANALYST: SRL REMARKS CODE DILUTION FACTOR: 1	801W: 802W: 824W:	M
*Vino7 *Vino8			Approximate Detection Limit De 10	etectec <u>ug/</u> NI	<u>/1</u>

		Approximate Detection Limit	Detected at
*VW07	Vinylchloride	<u>uq/1</u>	<u>ug/1</u>
*VW08		10	<u> </u>
*VW09		10	ND
*VW10		10	ND
ANTO	Ciloroethane	10	ИD
*VW11		10	NTD.
	Acetone	50	ХD
VW13		2	ND
*VW14	Carbondisulfide	2	ND ND
VW15	Manhard and many		AL/
VW16	Methylene Chloride	2	ИD
VW17	Methyl-t-Butylether (MTBE)	10	ND
VW18	1,2-Dichloroethene	2	NID
4110	1,1-Dichloroethane	2	ND
*VW19	Vinyl Acetate	50	
*VW20			MD
VW21	Chloroform	50	ND .
VW22	1,1,1-Trichloroethane	2 2	ИD
		2	ND
VW23	Carbon Tetrachloride	2	1995
VW24	Benzene	2	ND
VW25	1,2-Dichloroethane	2	ND
VW26	Trichloroethene	2	ND ND
VW27	1 3 84-61.		ALJ
VW28	1,2-Dichloropropane	2	ND
*VW29	Bromodichloromethane	2	ND
*VW30		20	ND
VH30	Cis-1,3-Dichloropropene	2	ND
VW31	Toluene	2	
*VW32	Trans-1,3-Dichloropropene	2	סא
VW33	1,1,2-Trichloroethane	2 2	XID
**VW34	2-Hexanone		· ND
		20	ND
VW35	Tetrachloroethene	2	\
VW36	Dibromochloromethane	2	<u>ж</u>
VW37	Chlorobenzene	2	ND
8EWV	Ethylbenzene	2	MD MD
9EWV	Yest on a -	_	W
*VW40	Yylenes	2	ND
VW41	Styrene	2 2	NID
VW42	Bromoform	2	MD
TVH	1,1,2,2,-Tetrachloroethane	2	ND
	Total Volatile Hydrocarbons	100	ND
REMARKS	detected when methods 801W a	nd 802W are run.	
	~~ ~ ~ * * * * * * * * * * * * * * * *	oozn are run.	

SURROGATE RECOVERIES.

1,2-Dichloroethane - D4: 97% D8-Toluene: 110%4-BromoFluorobenzene: 103%

DEPT. OF ENVIRONMENTAL CONSERVATION LAB MANAGEMENT SYSTEM PAGE FINAL LAB REPORT

DATE 11/28/89

LAB ID 47479 REPORT TO D/SHEPARD DUE DATE 11/12/89

SOURCE LOCATION SENECAL

COLLECTION DATE 10/11/89

PROGRAM 021-MULTI-SITE COOP AGREEMENT

AMBIENT WATER SAMPLE Y

SUBMITTED BY D/SHEPARD PHONE 244-8702 SUBMIT DATE 10/12/89 LEGAL YES

TEST						
CODE	TEST NAME		RESULT	UNIT OF MEASURE	REMARKS CODE	PROCESS Date
901M	METHOD 8010 TESTS. WATER		0	NONE	м	10/18/89
302W	METHOD 8020 TESTS, WATER		٥	NONE	M	10/18/89
924W	METHOD 8240 TESTS, WATER		0	NONE	z	10/18/89
TAS2	ARSENIC TOTAL - FURNACE	<	5	UG/L	•	
100	CADMIUM TOTAL		3	UG/L		10/25/89
rc _R	CHROMEUM TOTAL	<	2			10/27/89
TPB	LEAD TOTAL		_	UG/L		10/25/89
(HG		<	5	NG/L		10/27/89
	MERCURY TOTAL	<	0-2	UG/L		11/03/89
r\$E2	SELENIUM TOTAL - FURNACE	<	5	UG/L		11/02/89
rag2	SILVER TOTAL - FURNACE	<	1-0	UG/L	•	11/09/89
rS BZ	ANTIMONY TOTAL - FURNACE	<	5.0	UG/L		11/15/89
יבט	COPPER TOTAL		107	UG/L		
'NI	NICKEL TOTAL	_		OG/L		10/25/89
TL2		<	5	NG\F		10/27/89
	THALLIUM TOTAL - FURNACE	<	2.0	UG/L		11/13/89
īZN	ZINC TOTAL		26	UG/L		10/27/89

DEPT. OF ENVIRONMENTAL CONSERVATION LAB MANAGEMENT SYSTEM PAGE

FINAL LAB REPORT

DATE 11/28/89

_A8 I	D 47479 REPORT TO	D/SHEPARD	DUE DATE	11/12/89	
TBA2	BARIUM TOTAL - FURNACE	210	UG/L		11/20/8
(BE2	BERYLLIUM TOTAL - FURNAC	E < 1_0	uszi		11/00/0

DEPT. OF ENVIRONMENTAL CONSERVATION LAB MANAGEMENT SYSTEM PAGE 1

FINAL LAB REPORT

DATE 11/28/89

.AB ID 47478 REPORT TO D/SHEPARD OUE DATE 11/12/89

COURCE LOCATION BBT

COLLECTION DATE 10/11/89

PROGRAM 021-HULTI-SITE COOP AGREEMENT

AMBIENT WATER SAMPLE Y

SUBMITTED BY DISHEPARD

PHONE 244-8702 SUBMIT DATE 10/12/89 LEGAL YES

I						
EST :DDE	TEST NAME		RESULT	UNIT OF Measure	REMARKS CODE	PROCESS Date
30 TM	METHOD 8010 TESTS, WATER		0	NONE	М	10/18/89
102W	METHOD 8020 TESTS, WATER		0	NONE	М	10/18/89
124H	NETHOD 8240 TESTS, WATER		0	NONE	Z	10/18/89
AS2	ARSENIC TOTAL - FURNACE	<	5	UG/L		10/25/89
CD	CADMIUM TOTAL		2	UG/L		10/27/89
CR	CHRONIUN TOTAL	<	2	UG/L		10/25/89
РВ	LEAD TOTAL	<	5	UG/Ł		10/27/89
HG	MERCURY TOTAL	<	0-2	UG/L		11/03/89
SE2	SELENIUM TOTAL - FURNACE	<	5	UG/L		11/02/89
AG2	SILVER TOTAL - FURNACE	<	1_0	UG/L		11/09/89
SBZ	ANTIMONY TOTAL - FURNACE	<	5.0	UG/L		11/15/89
cn	COPPER TOTAL		372	UG/L		
NI	NICKEL TOTAL					10/25/89
TL2		<	5	UG/L		10/27/89
ZN	THALLIUM TOTAL - FURNACE	<	2.0	UG/L		11/13/89
~I V	ZINC TOTAL		320	UG/L		10/27/89

DEPT. OF ENVIRONMENTAL CONSERVATION LAB MANAGEMENT SYSTEM PAGE

FINAL LAB REPORT

DATE 11/28/89

-	AB I	D 47478	REPORT TO	D/SHEP AR	D	DUE DATE	11/12/89	
ļr	BA2	BARIUM TOTAL	- FURNACE		180	UG/L		11/20/8
ſ	B <i>E</i> 2	BERYLLIUM TOT	TAL - FURNAC	E <	1.0	UG/L		11/08/8

FINAL LAS REPORT

DATE 10/23/89

LAB ID 47477 REPORT TO D/SHEPARD DUE DATE 11/12/89

SOURCE LOCATION TRIP BLANK COLLECTION DATE 10/11/89

PROGRAM 021-MULTI-SITE CCOP AGREEMENT

ANBIENT WATER SAPPLE Y

SUBMITTED BY D/SHEPARD PHONE 244-8702 SUBMIT DATE 10/12/89 LEGAL YES

CODE	TEST NAME	RESULT	UNIT OF MEASURE	REMARKS CODE	FRGCESS DATE
801 W	METHOD 8010 TESTS. WATER	a	NONE	N	10/18/89
802W	METHOD 8020 TESTS, WATER	c	NONE	м	10/18/89
824W	METHOD 8240 TESTS, WATER	Q	NONE	z	10/18/89

ATTACHMENT F

VT ANR Sampling Results June 12, 1985

DEBT. TE MATER RESIDENCES LAB MANAGEMENT SYSTEM

FINAL LAR DESIGNE

DATE 07/29/35

CAR IN TENSE REPORT TO CASTONE

DUE DATE 07/13/85

SOURCE LOCATION OF TISS 30" 2"DEEP COLLECTION DATE 06/12/85

TRUCKAM OSS-HAZARDOUS MASTE

AMBIENT WATER SAMPLE Y

IMMITTED 3Y C/STONE PHONE 928-3395 SUPPLIT DATE 06/13/95 LEGAL NO

AMPLE MOTEST

:						
:	ODE.	TEST MAME	RESULT	UNIT OF MEASURE	REMARKS CODE	PRUCESS DATE
ï	* P.A.	BULLUT HILL WILL WILL	0	UG/L	М	- 07/13/6
)	řΚ	POTASSIUM TOTAL	0-00	MGZL	4	07/15/
ı	reg	CHROMITUM TOTAL	0	UG/L	, M	07/08/8
	<u>ל</u> קט	CADMIUM TOTAL	0	. UG/L	Ņ	
	rop	LEAD TOTAL	0	UG/L		07/09/8
,	* ZN	ZING TOTAL	n	1/G/L		07/15/
τ	ÍMI	NTCKFL TOTAL	0		M	07/03/8
	ςco	CADITHIN SOIL	t_a	UG/Ł	М	07/15/9
	; rig	CHOUNTIN SOIL	14.4	MG/KG		07/03/
	SZM	ZING SOIL		MG/KG		07/09/8
	. к	חוראי וייוז איזור	347.0	MG/KG		07/03/1
	ר אן	MICKET SOIL	44.7	MG/KG		07/19/9
	5 Drg		17.1	MG/KG		07/10/8
٠	TRA	LEAD SOLL	78.8	MG/KG		97/10/8
	420F	MARTUM SHILL	16	MG/KG		07/18/
	17.46	SOLIOS-PERCEUT	20-830	PERCENT		07/24/8

FINAL LAB REPORT

DATE 07/29/85

LAB ID 11996 REPORT TO CISTONE

DUE DATE 07/13/85

SOURCE LOCATION OF TISS 301 LIBER COLLECTION DATE 06/12/85

PROGRAM 022-HAZARDOUS WASTE

AMBIEMT WATER SAMPLE Y

SUBMITTED BY CASTONE . PHONE 829-3395 SUBMIT DATE 06/13/85 LEGAL NO

	TEST NAME	RESULT	UNIT OF MEASURE	REMARKS Code	PROCES:
TBA	PAPIUM TOTAL	o	UG/L		
Τ ୯	POTASSIUM FOTAL	0.00		14	- 07/18/
FER	CUROMIUM TOTAL	•	· MG/L	н	07/15/
ren	CARMIUM TOTAL	0	UG/L	М	07/08/
t PB	LEAD TOTAL	o	UG/L	M	07/08/
1 7N		o	UG/L	4	07/15/
	ZINC TOTAL	. 0	UG/L	4	07/03,
1711	NICKEL TOTAL	n	UG/t	м	Ó7/15.
2CD	CARMINA SOLL	< 0.2	HG/KG	-	
~ CR	CHROMITUM SOIL	7.1			07/09/
SZN	ZINC SOIL		MG/KG		07/09/
sκ	PHTASSIUM SHIL	151.0	MG/KG		07/09/
		22.0	MG/KG		07/10/
	MICKET SUIT	44.7	4G/KG		07/10/
_	ETAD SMIL	37.3	MG/KG		07/10/
534	BARTUM SHIE	7	MG/KG		
ግናባር	SUCTUS-028CEAL	12.160	PERCENT		07/18, 07/24,

FINAL LAB REPURT

DATE 07/11/35

CAB ID 11958 REPORT TO CASTONE

DUE DATE 07/13/85

SOURCE LOCATION VT TISSUE OUTFALL COLLECTION DATE 06/12/05

PROGRAM 022-PAZARONUS WASTE

AMBIENT WATER SAMPLE Y

DN JADEJ 28/EI/60 STAC TIMEUS 278-828 SHEAR PHONE SUBSTITUTED YE CETTIMBUS

1621	TEST NAME		RESULT	UNIT OF MEASURE	REMARKS CODE	PRECESS DATE
JBA	BARTHM DISSOLVED		229	UG/L		
IPB	LEAD DISSULVED	_		0671		07/18/85
ICR		<	4	UG/L		07/16/85
	CHROMIUM DISSOLVED	<	2	UG/L		07/08/85
CD	CADMIUM DISSULVED		i -	UG/L		
K	POTASSIUM DISSULVED		1.16	_		07/08/85
Z١١	ZINC DISSOLVED		3.15	MG/L		06/19/85
			165	UGZL		07/03/85
941	NICKEL DISSOLVED		8	UG/Ł		
CR	CHROMIUM HEXAVALENT		٥			07/16/85
			o	UG/L	М	07/15/85

FINAL LAB REPORT

CATE 07/19/85

EAB TO 11940 REPORT TO CYSTENE DUE DATE 07/13/85

SOURCE LOCATION VT TISSUE 30. 1.DEEP CULLECTION DATE 06/12/85

PROGRAM OZZ-HAZARDOUS WASTE

AMBIENT WATER SAMPLE Y

SUBMITTED BY CASTURE PHONE 828-5395 SUBMIT DATE 06/13/85 LEGAL NO

TEST	TEST INME	RESULT	UNIT OF MEASURE	REMARKS COUE	PRCCESS DATE
OBA	BARTUM DISSOLVED	1525	UG/L		07/18/95
DPB	LEAD DISSULVED	12			-
OCR	CHROMIUM DISSULVED		UG/L		U7/16/85
ocs		7	UG/L		07/08/85
	CADMIUM DISSULVED	1	UG/L		07/08/85
ÐΚ	POTASSIUM SISSOLVED	4.99	MG/L		.06/19/85
DZN	ZINC DISSULVED	703	UG/L		
INC	NICKEL DISSULVED	48			07/03/85
HCR	CHROMIUM HEXAVALENT		UG/L		07/16/85
	STANDALINE HEXAVELENT	C	UG/L	Ħ	07/15/85

(

FINAL LAB REPORT

DATE 04/27/85

PEPPER TO CYSTONE DUE DATE 07/13/85

SOURCE LOCATION VT TISSUE OUTFALL COLLECTION DATE 06/12/85

PROGRAM 022-HAZARDOUS WASTO

AMPLENT MATER SAMPLE Y

SUBMITTED BY CASTONE PHONE 828-3395 SUBMIT DATE 06/13/85 LEGAL NO

CO DE	TEST NAME	RESULT	UNIT OF MEASURE	F FM AP KS CODE	PROCESS OATE
WQ 0.1	METHOD 601 TESTS	0	NONE	U	06/20/95
M6 02	METHOD 602 TESTS	0	NONE	u	96/20/85

FINAL LAB REPORT

DATE 06/27/85

11924 PEPORT TO CASTOME

OUE DATE 07/13/85

LOCATION VT TISSUE 30" TO SHOR COLLECTION DATE 06/12/85

M U22-HAZAFDOUS WASTE

AMBIENT WATER SAMPLE Y

TED BY CASTONE " PHONE 828-3395 SHBMIT DATE 06/13/85 LEGAL NO

NOTES:

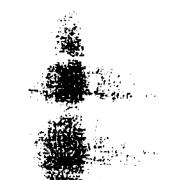
TEST NAME	FESULT	UNIT OF MEASURE	REMARKS CODE	PROCESS DATE
METHOD GOT TESTS	o	NONE	IJ	06/20/85
METHIO 602 TESTS	O	NCNE	U	06/20/85

FINAL LAB RETURN

DATE 07/19/85

REPERT TO CISTONE DUE DATE 07/13/85

SOURCE LUCATION VT TISSUE 309 2ºDEEP COLLECTION DATE 06/12/85


PROGRAM 022-HAZARDHUS WASTE

AMBIENT WATER SAMPLE Y

SUBMITTED BY CASTONE

PHONE 823-3335 SUBMIT DATE 06/13/85 EEGAL NO

STEST					
CODE	TEST NAME	RESULT	UNIT OF MEASURE	REMARKS CODE	PRCCESS DATE
DBA	BARTUM DISSULVED	1275	Մե/լ		
DPB	LEAD DISSOLVED	16	υG/L		07/18/85
DCR	CHRUMIUM DISSULVED	9	UG/L		07/16/85
ock.	CADMIUM DISSULVED	1		• .	07/08/85
I DK	PRIASSIUM DISSOLVED	3.39	UG/L		07/08/65
יע	ZINC DISSULVED		MG/L		06/19/85
_DNI	NICKEL ISSULVED	956	UG/L		07/03/85
1	CHROMIUM HEXAVALENT	54	UG/L		07/16/85
	- TOTAL PERAVALENT	0	いらくし	М	07/15/85

ATTACHMENT G

VT ANR Sampling Results September 14, 1984

DEPT. OF WATER PRISOURCES LAR MANAGEMENT SYSTEM

FINAL LAB FEPCPT

DATE 10/23/84 .

1 AR 10 07975

REPORT JO BYFITZGERALD DUE DATE 10/14/84

COLLECTION DATE 09/14/84

'ROGRAM DZZ-HAZARDOUS WASTE

SUBMITTED BY B/FITZGERALD PHONE 828-3395 SUBMIT DATE 09/14/84 LEGAL NO

ES 000 AS : 10 R	TEST NAME ARSENIC TOTAL - FURNACE CACMIUM TOTAL CHPOMIUM TETAL IRON TOTAL LEAD TOTAL	PESULT < 4 2 48 2820 178	UNIT OF MEASURE UG/L UG/L UG/L UG/L	REMARKS CODE	PRUCESS DATE 10/17/84 09/25/84 09/25/84
3	NICKEL TOTAL	10	UG∕ Ľ		09/25/84
:	SELENTUM TOTAL	0	UG/L	P	09/25/84 10/22/84
I	ZINC TOTAL	433	UG/L		10/01/84
			ΩG∖Γ		09/25/84

602 Test only

DEPT. OF WATER RESOURCES LAB MANAGEMENT SYSTEM

FINAL LAB REPORT

DATE 10/15/84

LA8 IC 07980

REPORT TO 8/FITZGERALD

DUE DATE 10/14/84

SOURCE LOCATION VERMONT TISSUE VOOS COLLECTION DATE 09/14/84

PROGRAM 022-HAZARDOUS WASTE

AMBIENT WATER SAMPLE N

SUBMITTED BY BIFITZGERALD PHONE 828-3395 SUBMIT DATE 09/14/84 LEGAL NO

1831 100E	TEST NAME	RESULT	UNIT OF MEASURE	REMARKS CODE	PROCESS DATE
1601	METHOD GOL TESTS	σ	NONE	M	10/15/84
1602	METHOD 602 TESTS	O			
1201	BENZENE	V	NONE	Ŧ	09/20/84
	DENZENE	1	PP8		09/20/84
202	TOLUENE	4	2.55		011 20, 31
		7	PPB		09/20/84

DEPT. OF WATER RESOURCES LAB MANAGEMENT SYSTEM

PAGE

FINAL LAB REPORT

DATE 10/15/84

L48 IC 07981

REPORT TO BIFITZGERALD

DUE DATE 10/14/84

SOURCE LOCATION VERMONT TISSUE VO04 COLLECTION DATE: 09/14/84

PROGRAM OZZ-HAZARDOUS WASTE

AMBIENT WATER SAMPLE N

SUBMITTED BY B/FITZGERALD PHONE 828-3395 SUBMIT DATE 09/14/84 LEGAL NO

EST	TEST NAME	RESULT	UNIT OF	REMARKS	PROCESS
1601	METHOD 601 TESTS	⊬c20€1	MEASURE	CODE	DATE
	METHOD 602 TESTS	0	NONE	U	09/20/84
	THOS GOZ FESTS	o	NONE	М	•
\boldsymbol{C}		٠		17	10/15/84

Trip Blank 6

DEPT. OF WATER RESOURCES LAB MANAGEMENT SYSTEM

FINAL LAE REPORT

DATE 1C/15/84

L48 ID 07977

REPORT TO B/FITZGERALD

DUE DATE 10/14/84

SOURCE LOCATION VERMONT TISSUE TRO2 COLLECTION DATE, 09/14/84

PROGRAM OZZ-HAZARDOUS WASTE

AMBIENT WATER SAMPLE N

SUBMITTED BY B/FITZGERALD PHONE 828-3395 SUBMIT DATE 09/14/84 LEGAL NO

TEST CODE	TEST NAME	RESULT	UNIT OF	REMARKS	BBAcco
1601	METHOD 601 TESTS		MEASURE	CODE	PROCESS Date
	METHOD 602 TESTS	a	NONE	Z	09/20/84
	-	o	NONE	м	10/15/84
(

Site Name: VERMONT TISSUE CERCLIS No.: VTD 0593733/6 TDD No.: FI- 8903-17 Reference No.: \$275 VT 58.F.\$

NPL ELIGIBILITY CHECKLIST

Are the wastes onsite considered hazardous as defined in		YES	NO	COMMENTS
*Sites covered by other authorities:			·	
Are the hazardous materials at the site solely petroleum products (gasoline, oil, natural gas)?				_
Is the contamination at the site caused solely by pesticides that were applied using an accepted practice?				
If the release is into public or private drinking water systems, is it due to deterioration of the system through ordinary use?	• 10 • 10			
Is the release from products which are part of the structure, and results in exposure within residential, business, or community structures?				
Did the release result in exposure to people solely within a work place?				
Does the facility have an Underground Injection Control permit under the Safe Drinking Water Act?			_	
Is the release the result of the normal application of fertilizer?				
Does the release involve naturally occurring substances in their unaltered form?				
Does the contamination at the site consist solely of radioactive materials generated by Department of Energy/Atomic Energy Commission activities?				
Is the contamination at the site caused solely by coal mining operations?				
Does the facility have a permit from the EPA or the US Army Corps of Engineers (under the Marine Protection, Research, and Sanctuaries Act) to dispose of dredged materials in ocean waters?			<u> </u>	

Site Name: VERMONT TISSUE CERCLIS No.: VTD 0593733/6 TDD No.: F/-8903-17 Reference No.: \$375 VT58IF YES NO COMMENTS *Other issues to site definition: Is the site defined solely as a contaminated well field? is the site currently owned or operated by a federal agency, or has it been in the past? Is the site a municipal landfill? -- Check if there is documentation of disposal of industrial waste. Does the waste consist of a "special waste" such as fly ash? -- Check if there is documentation of a hazardous component to the waste. Does the facility have an NPDES permit? Check if the facility has a history of permit violations. Is the facility subject to ambient air quality standards under the Clean Air Act? Does the facility have a permit under the Clean Air Act?

*RCRA Status

Has the facility notified as a RCRA generator?

- The facility is a large quantity generator.
- The facility is a small quantity generator.

Has the facility ever had RCRA interim status or a RCRA permit?

If yes, check any that apply:

 The facility is a "non-notifier" or "protective filer" (identified as such by EPA or the state). Site Name: VERMONT TISSUE CERCLIS No.: VTD 0593 733/6

TDD No.: F/-8903-17

Reference No.: \$375 VT58 I. \$

*RCRA Status (continued)

 The owner of the facility is bankrupt, or the owner has filed for protection under bankruptcy laws (if known).

 A RCRA compliance order or notice of violation has been issued for the facility at some time.

The order or notice concerned:

- conditions that posed a hazard (i.e., a release of contamination to the environment)
- administrative violations (i.e., recordkeeping or financial requirements).
- Some RCRA enforcement action is currently pending at the facility.
- A RCRA permit has been denied or interim status has been revoked for the facility.

The permit or interim status was revoked:

- because of conditions at the facility that posed a hazard OR
- because the facility failed to meet an administrative requirement (i.e., failed to file an acceptable Part 8 permit application).
- A closure plan has been requested or submitted for the facility under RCRA.
- A closure plan has been requested or submitted for the facility under RCRA.
- A closure plan has been approved for the facility under RCRA.
- The facility is closed and currently monitoring under RCRA regulations.

CERCLIS DATABASE FORM

DATE: July 23, 1990

	059373316 17 TE: <u>Route 6</u>		Benningto	on, \	/ern		nont Tissue building is on
Route 67A.							bondarid to the north of
ELEMENT	CERCLIS C		DESC	CRIP	TIOI	N	ENTRY
i. FOR ALL PROJEC	TS.						
State	C2(2)		Posta	al co	de		<u>vt</u>
Site ID (If available)	C101(12)		Dun or GS		adsi	treet	
Site Name	C104(40)						Vermont Tissue
Street Address	C110(25)						Route 67A
City	C111(25)						Bennington
County	*TBD						Bennington
Ownership	C136(2)		FF ST CO DI IL MI UN *TBD1 *TBD2 OH		Sta Co Dis Inc Mi Un Mu Pri	derally owned unty owned itrict owned ian lands xed owned known unicipally owned increased own	ed ed rship owned
Years of operation		*TBD	1900		to	<u>present</u>	90 + years
FMS Number (if assigned)		C315(4)					
Coordinates	*TBD			Lat	itud	e	<u>42° 54′ 54″</u>
				Lor	ngitu	ıde	<u>73° 14′ 02″</u>

ELEMENT	CERCLIS CODE (No. of positions)	DESCRIPTION ENTRY
Recommendation of Most Recent Project at Site	C2103(1)	For PAs: H = High = SSI Required M = Med. = SSI Recommended N = NFRAP = No Further Remedial Action Planned
		For SSIs: R = Recommended for an LSI D = Deferred to another authority N = NFRAP = No Further Remedial Action Planned
		For LSIs: G = Recommended for an HRS Scoring N = NFRAP = No Further Remedial Action Planned
		R
Note	C2105(20)	Abbreviated Comments
Reasons for Ineligibility (for Sites Determined Ineligible under		
CERCLA)	*TBD	*TBD1 = Petroleum contamination only *TBD2 = Active RCRA facility *TBD3 = Properly applied pesticide *TBD4 = Nuclear/radioactive waste *TBD5 = All other reasons
Agency Responsible for Work at Site	C2117(2)	F = EPA, Fund financed S = State, Fund financed SN = State, no Fund financing FF = Federal facility *TBD = Responsible PartyF

-

ELEMENT	CERCLIS CODE (No. of positions)	DESCRIPTION ENTRY
II. ONLY FOR SITE	WITH HRS	
Type of Facility of		
Source	C137(1)	B = Chemical Plant C = City Contamination L = Landfill M = Manufacturing Plant N = Military Facility F = Other Federal Facility T = mines/tailings P = Lagoons A = Abandoned/Midnight dumping
If unknown,		- · · · ·
Type of Waste		
Present		R = Radioactive Waste
		J = Inorganic Waste
		*TBD = Organic Waste
		= Other Industrial Waste
		D = Dioxin
lf unknown, Type of Receptor		
Affected		V = Waterways/river
		H = Housing Area
		W = Drinking Water Wells
		*TBD = Ecological Receptors
		O = Other
Abstract	C201(240)	Site Description
	····	

•